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EGFRvIII: An Oncogene with Ambiguous Role
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Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblas-
toma (GB), as it is specifically present on up to 28–30% of GB cells. In case of other tumor types, expression and possible role of
this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active
anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be
resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or
homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low,
and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of
recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this
oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII

expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies.
On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced
proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells.
Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and,
therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and
advanced cancer stages.

1. EGFR: Parental Gene of EGFRvIII

Epidermal growth factor receptor (EGFR/ErbB1/HER1) is
a member of a tyrosine kinase receptor family, also in-
cluding ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/
HER4 [1]. All these receptors are transmembrane glyco-
proteins with a molecular mass ranging from 170 to
185 kDa [2]. Activation of ErbB receptor may be triggered
by one of 13 ligands, such as epidermal growth factor
(EGF), transforming growth factor-α (TGF-α), amphir-
egulin, betacellulin, epiregulin, neuregulin 1–6, heparin-
binding EGF-like growth factor (HB-EGF), or epigen, with
the first five being EGFR-specific [3]. It is not clear how
EGFR is activated and triggers a cascade of downstream
signaling in cells. Generally, its activation involves ligand

binding and subsequent receptor dimerization; however, it
was also indicated that receptor may dimerize regardless of
ligand presence [4, 5]. Intriguingly, dimers formed in such
a ligand-independent manner remain inactive till the li-
gand is finally bound [4]. Activation of EGF receptor may
induce signal in Ras/Raf/MAPK, PI3K/AKT, JAK/STAT,
or PLC/PKC pathways [6, 7], having an impact on a variety
of cellular processes, including proliferation, metabolism,
apoptosis, cell survival, or differentiation [8, 9]. Termi-
nation of signaling cascade occurs after receptor in-
ternalization, mostly in clathrin-dependent endocytosis,
leading to its trafficking into early endosomes. Further,
receptor may be either transported back to the cell
membrane or degraded in late endosomes and lysosomes
[10].
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Gene encoding EGFR is located on a short arm of
chromosome 7 (p11.2) and consists of 28 exons [11]. Mature
EGFR protein (1186 amino acids) is formed from a precursor
one (1210 amino acids) following the removal of the N-
terminal part [12]. From the N to the C-terminal end, EGFR
is composed of extracellular domain involved in ligand
binding and receptor dimerization (exons 1–16), hydro-
phobic transmembrane domain (exon 17), and intracellular
domain with tyrosine kinase activity that is �anked by the
linker region and the C-terminal part of the receptor (exons
18–28) (Figure 1(a)) [13]. Twelve out of 20 tyrosine residues
of intracellular domain were demonstrated to undergo
phosphorylation and these bind membrane-bound or cy-
toplasmic e�ector proteins that are recruited following re-
ceptor activation [14, 15].

2. EGFRvIII Alteration in Cancer

Overexpression of EGF receptor was detected in many tu-
mor types and demonstrated to be associated with cancer
cell resistance to chemo-, radio-, and/or hormone therapy.
�is receptor is often mutated in certain tumors, especially
in extracellular and tyrosine kinase domains [16], resulting
in elevated or prolonged EGFR signaling [17, 18]. Such
abnormal signaling is associated not only with enhanced
proliferation and apoptosis inhibition in tumor cells, but
also with metastasis and angiogenesis [19, 20]. In case of
glioblastoma (GB), EGFR ampli�cation is in the majority of
cases accompanied by gene rearrangements. Such alterations
involve deletion of particular exons or exon parts and are
designated as EGFRvI (deletion of N-terminal part), EGFRvII

(deletion of exons 14 and 15), EGFRvIII (deletion of exons
2–7), EGFRvIV (deletion of exons 25–27), and EGFRvV

(deletion of exons 25–28) [21–24]. One of the most com-
monly detected variants in GB cells is EGFRvIII [25–29]
(Figure 1(b)).

Despite being mentioned in several articles [30], alter-
native splicing does not constitute key mechanisms for
EGFRvIII expression in glioblastoma and other tumor types.
�ere are only single reports indicating that this phenom-
enon may be involved in EGFRvIII generation in head and
neck squamous cell carcinoma (HNSCC), but it is still not
considered the major mechanism. Gene encoding EGFR is
ampli�ed in approximately 50% of GB patients, and in
50–60% of cases, ampli�cation is accompanied by EGFRvIII

expression that is tumor cell-speci�c, making this oncogenic
protein a perfect therapeutic target [22, 31, 32]. Expression of
mutated receptor is also detected in few percent of prostate,
breast, or colon cancer cases, but only in trace cell pop-
ulations [33–36]. Nevertheless, EGFRvIII expression in tu-
mor types other than glioblastoma remains controversial
and needs to be unequivocally assessed, as many contra-
dictory data have been published so far [27, 37–41]. Such
inconsistencies are particularly associated with technical
limitations of applied methodological approaches. Data
collected from several research centers indicate that results
of EGFRvIII-related analyses tend to be even completely
inconsistent. As an example, a research conducted by
Moscatello et al. (1995) demonstrated EGFRvIII expression in

73% of ovarian cancer samples (Western blot analysis) and
was completely contradictory to independent analysis, uti-
lizing other methods, that indicated lack of this oncogene
expression at both mRNA and protein levels in analyzed
tumor samples, as well as cell lines [34, 42–44]. Similar
inconsistencies were detected in case of colon or bladder
cancer [43, 45–47] and most interestingly, in breast cancer,
in which case EGFRvIII expression is in some reports esti-
mated to be 20–78%, while in others not to exceed 0–4%
[34, 36, 43, 48–50]. Nevertheless, various agents acting on
EGFRWT or EGFRvIII are extensively studied in di�erent
types of cancers (summarized in Table 1).

From a therapeutic point of view, glioblastoma seems to be
themost important tumor type in terms of EGFRvIII because of
the relatively high expression and frequency of occurrence of
this oncogene and, most importantly, continuous lack of ef-
fective therapy for GB patients. Due to the deletion of 801 bp
encoding N-terminal, domains I and II are lost and the
mutated receptor becomes unable to bind ligands [8, 25].
Mechanisms leading to the formation of nucleotide sequence
encoding EGFRvIII have not been completely elucidated yet;
however, it seems plausible that deletion of receptor part is the
result of recombination between Alu sequences �anking
junctions in introns 1 and 7 of EGFR-encoding gene [117]. As
EGFRvIII usually acts as an ampli�ed gene, it may be suggested
that increase in the number of gene copies will translate into
increased mRNA levels of this oncogenic variant, but no such
obvious dependence has been found, even in relation to
EGFRWT levels [118, 119]. It may be associated with the fact
that the main role of gene ampli�cation in this case is not to
provide additional gene copies that will increase mRNA levels
of ampli�ed gene. With the current focus on the �eld of
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Figure 1: Schematic structure of EGFRWT (a) and EGFRvIII (b).
Both receptors are composed of extracellular (I–IV), trans-
membrane, and intracellular domains, and the major di�erence is
deletion of exons 2–7 encoding extracellular domains I and II in
mutated receptor. As a result of deletion, EGFRvIII is unable to bind
known ligands and shows enhanced stability in cell membrane.
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Table 1: Agents acting specifically on EGFRvIII or on both EGFRvIII and EGFRWT, based on the analysis of different cancer types.

Specificity Examined cancers Activity Stage of
research References

Agents acting only on EGFRvIII

Immunotherapy
ADC AMG-595 EGFRvIII Glioblastoma Potentially active Phase I [51]

CARs CAR-T e.g., EGFRvIII Glioblastoma Potentially active Phase I [52, 53]
Lung cancer Potentially active Preclinical [54]

BiTE bscEGFRvIII ×CD3 e.g., EGFRvIII Glioma Potentially active Phase I [55, 56, 57]
Vaccine Rindopepimut EGFRvIII Glioblastoma Inactive Phase III [58]

RNA interference

Ribozymes e.g., EGFRvIII Breast cancer Potentially active Preclinical [59]
Glioblastoma Potentially active [60]

Antisense
oligonucleotides e.g., EGFRvIII Glioblastoma Potentially active Preclinical [61, 62]

siRNA e.g., EGFRvIII Glioblastoma Potentially active Preclinical [61, 63]
Agents acting on EGFRvIII and EGFRWT

Tyrosine kinase inhibitors

First generation

Gefitinib EGFR/HER1

High-grade gliomas Limited activity Phase II [64, 65]
Non-small-cell lung cancer Active Clinical use [66, 67]

Salivary gland cancer Potentially active Phase II [68]
Breast cancer Potentially active Phase II [69]

Ovarian, peritoneal, or
fallopian tube cancer Potentially active Phase I/II [70]

Liver cancer Potentially active Phase II [71]

Lapatinib EGFR/HER1/
HER2

Glioblastoma Inactive Phase I/II [72, 73]
Breast cancer Active Clinical use [74]
Gastric cancer Limited activity Phase II [75]

Colorectal cancer Potentially active Phase II [76]

Erlotinib EGFR/HER1

Gliomas Limited activity Phase II [77, 78]
Vulvar cancer Potentially active Phase II [79]

Non–small-cell lung cancer Active Clinical use [80, 81]
Pancreatic cancer Active Clinical use [82]

Head and neck cancer Limited activity Phase II [83, 84]

Second
generation Afatinib EGFR/HER1/

HER2/HER4

Non-small-cell lung cancer Active Clinical use [85]
Squamous cell carcinoma of

the lung Active Clinical use [85]

Head and neck cancer Potentially active Phase III [86]
Glioblastoma Limited activity Phase I/II [87, 88]
Breast cancer Potentially active Phase II [89]

Colorectal cancer Potentially active Phase II [90]
Immunotherapy

Antibodies

Cetuximab EGFR/HER1/
HER2

Head and neck cancer Active Clinical use [91]
Glioblastoma Potentially active Phase II [92, 93, 94]

Colorectal cancer Active Clinical use [95]
Esophageal and gastric cancer Limited activity Phase II [96]
Non-small-cell lung cancer Potentially active Phase II [97]

Breast cancer Limited activity Phase II [98]
Prostate cancer Inactive Phase II [99]
Cervical cancer Inactive Phase II [100]

Panitumumab EGFR/HER1

Colorectal cancer Active Clinical use [101, 102]
Biliary tract cancer Potentially active Phase II [103]

Head and neck cancer Inactive Phase II [104, 105]
Glioblastoma Potentially active Phase II [106, 107]
Breast cancer Potentially active Phase II [108]

Nimotuzumab EGFR/HER1

Glioblastoma Orphan status in
Europe and USA Clinical use [109, 110]

Head and neck cancer Active Phase II [111, 112]

Pancreatic cancer Orphan status in
Europe Clinical use [110, 113]

ADC ABT-414 EGFR/EGFRvIII Glioblastoma Limited activity Phase I [114, 115]
Breast cancer Limited activity Phase I/II [116]
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extracellular vesicles (EVs), the fact that extrachromosomal
amplicons may be transported between cells is gaining im-
portance [120]. ,erefore, in such a context, the role of
amplicons is not to increase oncogenemRNA levels, but rather
to enable more flexible regulation of gene expression as well as
transfer of mutated gene to cells initially lacking such alter-
ation. Moreover, detection of EGFRvIII in extrachromosomal
amplicons derived from cerebrospinal fluid may constitute a
highly specific and less invasive approach, to molecularly
diagnose GB patients and make them candidates for currently
developed anti-EGFRvIII-targeted therapies [118].

3. EGFRvIII Mechanism of Action

Compared to EGFRWT (normal EGFR protein), EGFRvIII

signaling is considered to be elevated, due to its ability to
dimerize in a ligand-independent manner. However, as it is
not clear whether EGF is indeed crucial for EGFRWT di-
merization or required only for a dimer to switch from
inactive to active state, the role of EGFRvIII dimerization is
becoming less evident [3, 4]. Loss of large extracellular
receptor fragment makes it difficult to determine whether
EGFRvIII dimerizes in tethered or untethered conformation
or if such conformation resembles active or rather inactive
EGFRWT [16]. Importantly, it has to be emphasized that
EGFRvIII exhibits constitutive activity [121, 122]. Our team
demonstrated that mutant phosphorylation is elevated when
compared to nonstimulated EGFRWT, while data obtained
by other research teams indicate that constitutive EGFRvIII

signaling corresponds to low level of signal intensity induced
by ligand-activated EGFRWT [17, 123–125]. Such data in-
dicate that EGFRvIII dimer conformation resembles inactive
dimers of EGFRWT, thus suggesting that impact of this
oncogenic receptor on cell biology is not a result of some
specific, dimerization-related kinase activity, but rather a
consequence of unique membrane stability [121, 122].
,erefore, constitutive activity of EGFRvIII is not particularly
high, but when combined with high membrane stability, it
may enable triggering of some significant biological effects
by this oncogenic receptor [17, 123–125].

Despite the fact that EGFRvIII stability seems to be more
important than its kinase activity, the latter feature is still
required to fully exhibit the oncogenic potential of this re-
ceptor. Such potential is dependent on signal transduction
induced by phosphorylated tyrosines (at least in a model
explaining EGFRvIII oncogenicity as a membrane receptor),
especially as EGFRvIII was demonstrated to undergo constant
phosphorylation and dephosphorylation cycles [123]. Addi-
tionally, our data indicate that EGFRvIII signaling may not be
associated with slightly elevated kinase activity, but rather its
minimally lower sensitivity to phosphatase activity, when
compared to wild-type receptor [123]. Moreover, we indicated
that enhanced phosphorylation of tyrosine 1045 did not result
in EGFRvIII degradation [123], suggesting that the previous
model of impaired EGFRvIII degradation requires an update
[121]. Nevertheless, without membrane stability, EGFRvIII

signaling will not be strong enough to induce a biological
effect. So far, the reasons behind the unique EGFRvIII stability
have not been fully elucidated. Initially, it was suggested that it

is a result of different phosphorylation of tyrosine responsible
for interaction with Cbl protein in mutated and wild-type
receptors [121]. Additionally, the involvement of FHL2 in
EGFRWT and EGFRvIII stabilization was suggested [126].
Stabilization and activity of EGFRvIII aremostly determined by
the quaternary structure of the receptor. Long noncoding
RNA (lncRNA) EGFR-AS1, an antisense transcript of EGFR,
was suggested to be involved in EGFR folding [127], but it is
still unknown whether this structure may have a different
impact onmutated thanwild-type receptor. Nevertheless, gene
encoding this lncRNA is located on the same amplicon as
EGFR and thus also undergoes amplification [127]. Actually, it
is still unknown why EGFRvIII is much more stable than
EGFRWT; however, such feature of this oncogenic receptor
may be considered crucial, as the ability to trigger EGFRvIII

degradation, considering its low kinase activity, may deprive
this variant of oncogenic properties. Intriguingly, the impact of
the dimerization process alone was suggested to be associated
with increased EGFRvIII stability, especially since the in-
volvement of the so-called “crypto” domains was described to
have an impact on EGFRWT stabilization [128–132].

According to the majority of analyses, EGFRvIII is able to
form both hetero- and homodimers [123, 133–140], and in
the latter case, covalent and noncovalent dimers can be
observed [17, 123]. Our analyses indicate that the most of
EGFRvIII monomers are a part of covalent homodimers with
covalent bonds formed with the involvement of free cysteine
in position 16 of amino acid chain (Figure 2(a)) [123].
Nevertheless, some authors undermine the constitutive
activity of the mutant, suggesting that EGFRvIII activity is
mostly due to EGF-activated EGFRWT forming a hetero-
dimer with EGFRvIII (Figure 2(b)) [138]. Additionally, it was
suggested that only EGF-bound EGFRWT is able to phos-
phorylate EGFRvIII in a heterodimer, but not vice versa
[138]. ,e way these receptors tend to dimerize is sub-
stantial, as molecules inhibiting dimerization may be
plausibly used in anticancer therapy. Intriguingly, the
possibility of EGFRvIII cis-autophosphorylation is very rarely
discussed in the literature [135, 141]. Cross-activation of
EGFRWT kinases is well recognized as the mechanism crucial
for their activation, clearly explaining why receptor di-
merization is actually required. Nevertheless, a priori re-
jection of the hypothesis stating that some part of EGFRvIII

cis-autophosphorylates may be too hasty.
EGFRvIII is also suggested to dimerize with monomers of

other inactive receptors (hepatocyte growth factor receptor,
HGFR; platelet-derived growth factor receptor, PDGFR) or
to have an indirect impact on their function (Figure 2(c))
[142, 143]. Regulation of other receptors may potentially
constitute an additional mechanism for EGFRvIII-mediated
activation of signal transduction pathways, especially in the
absence of ligands. ,is hypothesis was more profoundly
tested by Greenall et al., who demonstrated that EGFRvIII is
able to activate HGFR via focal adhesion kinase (FAK);
however, it was not clearly defined how such activation takes
place on a FAK protein platform [139].

All doubts concerning the mechanism of EGFRvIII en-
courage researchers to search for mechanisms of oncogenic
action of this protein that are independent of its membrane
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receptor activities. One of the most interesting analyses is
focused on the nuclear role of EGFRvIII, as this function is
suggested to be very relevant [144, 145]. �erefore, EGFRvIII

interaction with oncostatin M receptor (OSMR) can be
considered interesting, as it may be possible to design mol-
ecules inhibiting such interaction for therapeutic purposes
[146]. In general, results of research conducted so far indicate
that the majority of EGFRvIII activity is exhibited outside the
nucleus, while its low kinase activity may be compensated by
uniquely high stability [17, 121, 123–125, 147–149].

4. Biological Role of EGFRvIII

Despite the fact that cells with high expression of mutated
receptor are unable to bind EGFR ligands, these cells are still
characterized by increased invasiveness and enhanced
proliferation rate when compared to cells with low EGFRvIII

expression or EGFRvIII-negative ones [147]. �erefore, it is
not only the mechanism of EGFRvIII action, but also bi-
ological changes triggered within EGFRvIII-positive cells, as
well as the role such cells play in tumor as a whole, that are
important when considering the impact of this mutated
receptor. �is aspect can be especially important, since
EGFRvIII expression is not observed in all cells comprising
the tumor [33]. Our data suggested that EGFRvIII acts as a
classical oncogene, stimulating proliferation and inhibiting

apoptosis of glioblastoma cells [147], while other studies
indicated much more complicated in�uence of this onco-
gene. Considering the impact of EGFRvIII on cells, both
autocrine and paracrine e�ects were investigated. As an
example, EGFRvIII-positive cells may secrete leukemia in-
hibitory factor (LIF) and IL-6 that activate IL-6R/gp130
receptors present on the surface of EGFRWT-positive cells,
promoting their proliferation. Moreover, by activation of
NF-κB pathway and stimulation of survivin expression, IL-6
may make cells more resistant to apoptosis [150, 151].

EGFRvIII amplicons are present only in part of glio-
blastoma cells derived from patients and in stable DK-MG
cell line (intratumoral heterogeneity). Moreover, only part of
these amplicons is active (not epigenetically silenced) and
enables expression of the mutated gene [31]. EGFRvIII ex-
pression alone is epigenetically controlled, as it was dem-
onstrated that inhibition of histone deacetylation leads to
decrease in expression of this oncogenic receptor. It may be
explained by the fact that there is a relatively low EGFRvIII

expression in tumor parts where high ampli�cation level of
this mutated gene is detected [31, 152].

Some researchers suggest that EGFRvIII expression may
be present on the surface of brain cancer stem-like cells
(bCSCs) that share some similarity with normal neural stem
cells (NSCs) [153, 154]. �e former cells are characterized by
self-renewal potential as well as expression of markers
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Figure 2: Currently proposed models of EGFRvIII dimerization. (a) Covalently or noncovalently linked EGFRvIII homodimers. In both
cases, phosphorylation of tyrosine residues of both monomers can be observed. (b) Heterodimerization of EGFRvIII with ligand-activated
(e.g., EGF-activated) EGFRWT. Only EGFRvIII phosphorylation is observed in such a case. (c) EGFRvIII dimers with monomers of other
inactive receptors. Example of FAK-mediated EGFRvIII dimerization with HGFR, resulting in phosphorylation of HGFR tyrosine residues.
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characteristic for stem cells [155–157]. EGFRvIII is coex-
pressed withmarker characteristic for nondifferentiated cells
(CD133 and SOX2) [158, 159], and it is even indicated that
this oncogenic receptor may be used to define CSC pop-
ulations [158]. One can speculate that low kinase activity
together with high stability of EGFRvIII is enough to inhibit
cell differentiation. Interestingly, it can be also assumed that
EGFRvIII epigenetically reprograms cells, depriving them of
differentiation potential and, hence, following such process,
this mutated receptor may be no longer needed. Brain CSCs
are involved in initiation and progression stages of GB,
mostly due to their impact on angiogenesis and treatment
response [160, 161]. Moreover, presence of bCSCs may
hinder long-term maintenance of therapeutic effect, as
currently used compounds do not affect these cells, mostly
due to very efficient DNA damage repair mechanisms
[160, 161]. However, it was demonstrated that usage of
bispecific antibodies directed against EGFRvIII and CD133
(CSCs marker) has a cytotoxic effect on bCSCs and impairs
their self-renewal abilities [158]. Some researchers suggest
that in vivo CSCs, but not other cancer cells, are mostly
responsible for the process of tumor formation in SCIDmice
as well as for the propagation of intratumoral heterogeneity
[162]. Our results clearly demonstrated SOX2 expression in
high percentage of GB cells that, in our opinion, undermines
the presence of only a minor stem cell population in glio-
blastoma tumors [163].

5. Intratumoral Heterogeneity of
Glioblastoma in terms of EGFRvIII Expression

,e fact that EGFRvIII is not present in all GB cells in tumor
mass may complicate the perception of this receptor as a
perfect therapeutic target. However, if cells expressing
EGFRvIII are cancer stem cells [164] or EGFRvIII-negative
cells are somehow dependent on EGFRvIII-positive ones,
then discussed targeted therapy may turn out to be effective
(Figure 3(a)). Our research indicates that EGFRvIII-negative
cells may be indeed dependent on EGFRvIII-positive pop-
ulation. It is supported by the fact that we were unable to
establish a subline of DK-MG cell line completely deprived
of cell expressing this mutated oncogene, as at least small
percentage of EGFRvIII-positive cells was necessary in order
to maintain survival and proliferation [33, 147]. On the
other hand, at least in 30% of cases, EGFRvIII expression is
spontaneously lost in recurrent GB tumors, even when the
treatment was not directed against the mutated receptor
(Figure 3(b)) [119, 165]. Remarkably, there were also some
cases in which EGFRvIII expression was detected only in
recurrent GB tumors (Figure 3(c)) [119, 165]. Such obser-
vations are of utmost importance, as these enable to evaluate
the relevance of EGFRvIII and indirectly cells expressing this
mutated receptor, as therapeutic targets. If EGFRvIII is lost
(not detected) in recurrent tumors due to the fact that it is
present only in a small part of cells and EGFRvIII-negative
cells are independent of the activity of this oncogenic var-
iant, it undermines the validity of EGFRvIII-targeting ther-
apies, for example, those based on CAR-T technology [166].
It may be associated with the fact that the expression of some

oncogenes, including EGFRvIII, is crucial at earlier stages of
neoplastic transformation, but not further during advanced
cancer progression. Opinions on the role of EGFRvIII as well
as EGFRvIII-positive cells are extremely different, as this
oncogene is suggested either to play an insignificant role at
the later stages of carcinogenesis, or, on the contrary, to be a
marker of GB stem cells (Figures 3(a)–3(c)). Our analyses do
not confirm the hypothesis stating that EGFRvIII is irrelevant
in fully differentiated GB cells, as DK-MG cells deprived of
this oncogene expression lose their proliferation abilities are
more prone to apoptosis and unable to give rise to tumors in
SCID mice models [147].

Recently, a lot of attention is focused on the ability to
transfer extrachromosomal vesicles containing various
structures (including DNA amplicons) between cells. Ob-
viously, extrusion of amplicons or decrease in their number
during mitoses may lead to generation of cells without
amplicons [120]. Simultaneously, amplicons may be trans-
ferred to cells initially lacking such structures. Derivation of
amplicon-deprived cells from cells with amplicons, as well as
“infection” of cells lacking amplicons with these elements of
extrachromosomal DNA, is in favor of hypothesis stating
that EGFRvIII-positive cells may, in a certain sense, play a
role of precursor cells. It clearly emphasizes the biological
role of EGFRvIII not at the protein, but DNA level, and it may
partially explain why the expression of this mutated protein
is in particular cases very low, almost at the detection level of
protein analysis methods such as western blot. However, it
should not be confused with the role played by so-called
cancer stem cells.

,e fact that intratumoral heterogeneity may constitute
one of the mechanisms responsible for resistance of cancer
cells to targeted therapies (including TKIs) was first dem-
onstrated by Nathanson et al. and further confirmed by other
research teams. Such a specific adaptation via changing cell
phenotypes is mainly focused on achievement of an optimal
balance for the unaltered proliferation of the overall pop-
ulation and is mostly due to dynamic regulation of extra-
chromosomal DNA encoding mutated EGFR [167–169].

6. TargetedTherapies Based onTyrosineKinase
Inhibitors (TKI), Directed against EGFRWT

and EGFRvIII

A wide variety of factors contribute to the fact that glio-
blastoma is one of the most difficult tumors from a clinical
perspective and that effective therapies for patients di-
agnosed with this tumor type are still lacking. So far, many
therapeutic approaches were developed to treat patients with
EGFRvIII-positive glioblastoma (Table 1). Generally, average
survival rate of GB patients does not exceed 12–14 months
from themoment of diagnosis and there has been actually no
improvement for many years [170]. Ideal drug directed
against GB cells should be well tolerated by the patients, able
to cross the blood-brain barrier, and specifically induce
tumor cell death. Classical therapeutic regimen in case of GB
consists of surgical resection with adjuvant radio- and
chemotherapy with alkylating agent temozolomide [171].
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Current clinical and preclinical trials concerning anti-
EGFR/EGFRvIII therapies include small molecule tyrosine
kinase inhibitors, antibodies, vaccines, as well as therapies
based on RNA interference. As silencing of a single gene in a
particular signaling pathway may not be su§cient to provide
a therapeutic e�ect in GB patients, there is a need for a
complex approach, focusing on several signal transduction
pathways [172].

�ere have been several attempts to experimentally apply
EGFR tyrosine kinase inhibitors, also inhibiting EGFRvIII, in
glioblastoma therapy, as signi�cant di�erences between
kinase domains of mutated and wild-type receptor have not
been described so far. A broad spectrum of anti-EGFR TKIs
was developed, with the �rst-generation inhibitors (ge�tinib,
lapatinib, and erlotinib) binding reversibly and the second-
generation inhibitors (afatinib and dacomitinib) binding

CSC EGFRvIII+

Tumor cells

Relapse

(a)

Relapse30%

70%
Relapse

Tumor cells

Tumor cell
EGFRvIII+

(b)

Relapse

Tumor cells

Tumor cell
EGFRvIII+

(c)

Figure 3: Hypotheses concerning the presence and role of EGFRvIII-positive cells in tumors, on the example of glioblastoma. (a) One of the
hypotheses states that EGFRvIII is expressed on the surface of cancer stem cells (CSCs). In such a case, EGFRvIII-positive CSCs should be also
detected in recurrent GB tumors [164]. Nevertheless, failure to detect such cells may be due to the exposure of primary tumor to therapeutic
compounds. (b) Another hypothesis states that EGFRvIII-positive cells are only crucial during the early stages of carcinogenesis. It is
supported by reports demonstrating loss of expression of this mutated oncogene in approx. 30% of patients with EGFRvIII-positive primary
tumors [119, 165]. (c) Cells expressing EGFRvIII are also reported in recurrent tumors when primary GB was EGFRvIII-negative [119, 165].
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covalently to the receptor [173–175]. Inhibitors of the third
generation (rociletinib and osimertinib) covalently bind to
ATP-binding site in cells with T790M EGFR mutation,
conferring resistance to inhibitors of previous generations
[176]. Second-phase clinical trial studies demonstrated that
gefitinib, lapatinib, and erlotinib administered to patients
with primary or recurrent GB tumors resulted in only
marginal therapeutic response, when administered either in
monotherapy or in combination [72, 77, 177]. Although
osimertinib may be recognized as especially important in
terms of EGFRvIII, as it was suggested to be efficiently de-
livered to cancer cells in brain [176], the activity of this
compound against EGFRvIII-positive cells was lower when
compared to afatinib. Since the kinase domain of this splice
variant is structurally close to EGFR wild type, this was not
unexpected [176].

In case of TKI-based therapy, alterations downstream to
EGFRvIII, including PTEN mutations, should be taken into
account. Despite the fact that inactivating mutations of PTEN
have an impact on only one of EGFR-regulated pathways
(AKT), it was demonstrated that suchmutation is able to hinder
the impact of erlotinib on GB cells [178]. Considering this
aspect, immunotherapies may possibly outperform small
molecule-based approaches. Despite the wide availability of
TKIs clinically approved in oncological treatment, none of these
inhibitors is used as a standard approach in GB treatment
[64, 72, 77, 179]. As EGFRvIII is a key oncogene with kinase
activity-dependent function, it seems reasonable to consider
whether the efficacy of TKI-based therapies should not be
greater, especially since it has been postulated that the blood-
brain barrier in advanced GB is disrupted and thus should not
enable for crossing of smallmolecules [180]. It is well established
that EGFR-targetingTKIs improve the progression-free survival
of patients with EGFR-mutated non-small-cell lung cancers
(NSCLCs) [181, 182]. ,erefore, the verification whether
glioblastoma patients with high frequency of EGFR mutations
respond to TKIs is completely justified, even despite different
EGFR mutational spectrum. ,is becomes even more impor-
tant since Orellana et al. showed that ectodomain EGFR mu-
tations including those leading to EGFRvIII may sensitize tumor
cells to tyrosine kinase inhibitors [183]. Reports from in vitro
studies conducted on EGFRvIII-expressing cell lines tend to be
contradictory. Some results indicate EGFRvIII sensitivity, while
the others demonstrate that EGFRvIII, in contrast to EGFRWT,
appears to be relatively resistant to EGFR-TKIs [87]. By now,
several TKI-involving clinical trials on glioblastoma were
completed or terminated, however still without any significant
patients’ benefits [65, 72, 77, 88, 178, 184–188].Moreover, it was
demonstrated that although cetuximab binds to EGFRvIII and
decreases expression and leads to overall downregulation of this
mutated receptor, it does not inhibit the proliferation of
EGFRvIII-expressing GB cells and is not effective in GB clinical
trials [189–191]. ,erefore, it seems that so far neither EGFR-
TKIs normonoclonal antibodies such as cetuximab are effective
therapeutic options in glioblastoma patients, irrespective of
EGFRvIII occurrence in tumor [177, 188]. ,us, it is difficult to
speculate whether EGFRvIII affects EGFR-targeted treatment, as
no treatment approach was truly effective in patients, in spite of
quite encouraging results from in vitro studies. As EGFRvIII

presence in other tumor types is highly debatable, there were no
clinical trials to investigate the issue of EGFRvIII-modulated TKI
treatment response in tumors other than glioblastoma. Hence,
conclusions from studies on EGFR-TKIs/immunotherapies can
only be drawn concerning this particular tumor. Finally, as
Orellana et al. recently suggested the high probability that
mutated ectodomain of EGFRvIII induces structural changes in
the intracellular kinase domain [183], further research focused
on detailed understanding of molecular aspects of EGFRvIII

should be expected. On the other hand, considering current
standard therapeutic GB regimen, EGFRvIII is associated with
prolonged survival of GB patients treated with surgery and
radio/chemotherapy [192]. It was clearly shown that cases of
MGMT-methylated GB with endogenous EGFRvIII expression
are significantly more sensitive to temozolomide, than their
isogenic EGFRvIII -negative counterparts [193].

7. Immunotherapy in EGFRvIII-
Positive Tumors

Apart from TKIs, antibodies constitute the most extensively
analyzed group of EGFR-targeting compounds; however,
their evident efficacy in GB has not been demonstrated so
far. Highmolecular weight may be one of the factors limiting
their applicability in treatment of this tumor type [194], but
the integrity of blood-brain barrier may be compromised in
case of tumors with high level of malignancy [180].
Cetuximab is a chimeric monoclonal IgG1 antibody directed
against extracellular domain of EGFR that in clinical studies
was demonstrated to exert anticancer effect and increase
tumor cell sensitivity to radiotherapy in GB [92]. ,is
molecule was approved by the Food and Drug Adminis-
tration for the treatment of patients with head and neck
cancer and advanced colon cancer. Interestingly, it may be
used in case of increased expression of both EGFRWT and
EGFRvIII [195, 196], as it was demonstrated that cetuximab
may bind to domain III (L2) of EGFRvIII and reduce
autophosphorylation of this mutated receptor [197]. Pre-
clinical analyses indicate that following EGFRvIII binding
cetuximab induces receptor internalization, resulting in 50%
reduction of its active form [197]. Nevertheless, there is a
lack of clinical studies evaluating the impact of cetuximab
monotherapy on patients with primary glioblastoma
[198, 199]. When tested in vitro on GB cell lines with EGFR
overexpression or using in vivo GB models, cetuximab leads
to decrease in proliferation rate and enhancement of apo-
ptosis. Additionally, in the latter model, this antibody is able
to significantly inhibit tumor growth and increase median
survival rate [93]. During analyses conducted using stable
cell lines as well as neurospheres, magnetic iron oxide
particles (IONPs) were used to increase therapeutic avail-
ability of cetuximab and resulted inmore effective binding of
antibody to GB cells when compared to cetuximab alone, as
evaluated by the inhibition of EGFR signaling pathway and
increased receptor internalization [200]. ,ere is also an
ongoing research on the use of other antibodies in GB
therapy, for example, panitumumab (humanized mono-
clonal IgG2 antibody) or nimotuzumab (humanized
monoclonal IgG1 antibody), that are functionally similar to
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cetuximab [109, 201]. ,ese antibodies also bind to L2
domain, preventing ligand binding and receptor di-
merization [202]. Randomized phase III clinical trials
demonstrated that nimotuzumab administration in adult
GB patients increases overall survival when compared to
standard treatment [109].

In order to achieve higher therapeutic response, it is
also possible to conjugate antibodies with other drugs
(antibody drug conjugates, ADC). So far, ABT-414 and
AMG-595 were developed [114, 203] and the former
conjugate was demonstrated to selectively induce apo-
ptosis in cells with EGFRWT overexpression or EGFRvIII

expression both in vitro and in vivo using xenograft
models. ABT-414 conjugate consists of ABT-806 mono-
clonal antibody directed against EGFR and inhibitor of
microtubule polymerization—monomethyl auristatin F.
Despite the fact that ABT-806 was initially developed to
specifically interact with EGFRvIII, it also binds to wild-
type receptor, however, to a lesser extent [204]. Using
xenograft GB models, it was demonstrated that combi-
nation of ABT-414 with standard chemo- and radiother-
apy resulted in a significant decrease in cell proliferation
and overall decrease in tumor growth [114]. Currently,
there are ongoing phase I/II clinical trials aimed at eval-
uating the efficacy of ABT-414 administration in patients
with newly diagnosed (NCT02573324) or recurring GB
(NCT02343406). Analyses on an orthotopic mouse GB
model showed that ind-111-labeled ABT-806 antibody can
specifically recognize cancer cells [205].

Nowadays, one of the most promising immunotherapy-
based approaches in GB treatment is the usage of autologous
T lymphocytes with chimeric antigen receptor—CAR-T cells.
,ese are T lymphocytes that have been modified ex vivo and
able to recognize their molecular target irrespective of antigen
presentation by the molecules of major histocompatibility
complex [52, 206]. Structure of CAR-Tcells makes them able to
exhibit both activity of antibodies and toxicity of T lymphocytes
[207]. CAR-T is a technology of interest in research on many
cancer types; however, the prerequisite for its efficacy and lack of
side effects is antigen expression specifically on cancer cells
[208]. As EGFRvIII meets this requirement, it is possible to
develop CAR-T recognizing mutated form of the receptor by
antigen-specific, humanized single chain of variable fragment of
antibody, conjugated with transmembrane and intracellular
domains of T lymphocytes and NK cells. Similarly to modified
T lymphocytes,NK cells with introducedCARare able to exhibit
cytotoxic activity in vitro [209]. CAR-T cells directed against
EGFRvIII were able to effectively infiltrate tumor cells in brain in
in vivomodel [53].Notably, EGFRvIII-targetingCAR-Ttherapies
have currently reached phase I of clinical trials to treat GB
patients (NCT03283631, NCT02209376). On the other hand,
administration of CAR-T therapy in phase I and I/II clinical
trials directed against antigens present on both normal and
cancer cells (ErbB2, CD19) led to severe side effects and even
patients death [210, 211]. It is still not clear whether antibodies
designed to recognize EGFRvIII also detect wild-type EGFR
[43, 205, 212, 213], but if so, it may lead to some serious
side effects following administration of various immunother-
apies, including CAR-T approach. Moreover, as glioblastoma

tumor is highly heterogeneous, not all GB cells may respond to
CAR-T therapy directed against EGFRvIII.

Apart from CAR-T technology, there is also an ongoing
research on application of another immunotherapy-based
approach in GB treatment in a form of bispecific anti-
bodies activating T lymphocytes—bispecific T-cell
engagers (BiTEs). BiTEs are recombined immunoglobu-
lins composed of a single chain of variable fragments of
two antibodies: one directed against antigen expressed on
the surface of T lymphocytes and the second one against
the antigen present on target cells [214, 215]. Heavy and
light chains of variable antibody fragments are connected
with a short, elastic linker, rich in glycine and serine
residues. Extracellular EGFRvIII domain is small; hence, it
may be efficiently bound by BiTEs [216], and specificity
and cytotoxic activity of these molecules against this
mutated receptor were demonstrated using in vitro and in
vivo models. Properly designed bispecific antibodies are
characterized with very high specificity, resulting in a
minimal risk of induction of cross reactions in normal cells
[55]. Using BiTEs, it was demonstrated that stimulated
regulatory T lymphocytes secrete elevated levels of gran-
zymes and perforins and that their activity is directed
against EGFRvIII-positive cells [217, 218]. Currently, there
is an ongoing phase I clinical trial on administration of
AMG 596, drug containing BiTEs directed against
EGFRVIII and CD3 surface protein in GB patients
(NCT03296696).

It is worth to emphasize that results of our analyses,
supported by the data gathered by other research teams,
indicate that additional mutations within EGFRvIII that may
have an impact on efficacy of antibodies or small molecules
directed against EGFRvIII-characteristic protein fragments
are rarely occurring, but if so, these are distant from
EGFRvIII-specific parts [219, 220].

Vaccines constitute another therapeutic approach taking
advantage of patient’s immunological system to destroy
EGFRvIII-positive cells. So far, only one peptide vaccine,
rindopepimut, has been developed to induce humoral re-
sponse leading to elimination of GB cells expressing mutated
EGF receptor [221]. Rindopepimut (CDX-110) is based on
13-amino acid EGFRvIII-specific sequence conjugated with
keyhole limpet hemocyanin (KLH; hemocyanin neoantigen)
adjuvant [222]. In vivo preclinical analyses demonstrated
that tumor volume significantly decreased in 70% of animals
with subcutaneously injected cancer cells following CDX-
110 administration, when compared to the control group. It
was suggested that antibodies reactive against EGFRvIII-KLH
are involved in triggering of antibody-dependent cell
cytotoxicity (ADCC), regardless of antigen-specific
T lymphocytes activity [223]. Median survival rate of GB
patients treated with CDX-110 after surgical resection and
chemotherapy was prolonged to 24 months, as demon-
strated in 3 independent phase II clinical trials (ACTIVATE,
ACT II, and ACT III). Moreover, EGFRvIII-expressing cells
were not detected in 67% of patients receiving CDX-110
treatment for at least 3 months [222]. Nevertheless, phase III
clinical trial (ACT IV), comparing the efficacy of temozo-
lomide alone and temozolomide in combination with CDX-

Journal of Oncology 9

https://clinicaltrials.gov/ct2/show/NCT03283631
https://clinicaltrials.gov/ct2/show/NCT02209376
https://clinicaltrials.gov/ct2/show/NCT02209376


110 in GB, was terminated before the scheduled date, as
despite premises from the previous stages of clinical trials, it
failed to indicate the significant increase in patient survival
(median survival for CDX-110-treated patients was 20.1
months, while in control group 20 months). Still, the re-
searchers emphasized the relevance of research focused on
determination of the type of immunological response in-
duced by CDX-110 and highlighted the problem of the
selection of the appropriate molecular target for immuno-
therapy approaches [58].

8. Anti-EGFRvIII Therapy Based on
RNA Interference

Concerning the regulation of EGFRvIII expression, emphasis
should be also put on noncoding RNAs, especially micro-
RNAs (miRNAs). Aberrant expression of miRNAs has been
implicated in various tumor types, including glioblastoma,
and demonstrated to impact cancer cell proliferation, EGFR
downstream signaling, as well as efficacy of several anti-
EGFR-targeting therapeutic approaches. Unfortunately, the
majority of data were focused on wild-type receptor and we
can only speculate that similar mechanisms apply to
EGFRvIII. Decrease in miR-137 level in glioblastoma tissue
samples was found to be associated with poor prognosis and,
consequently, overexpression of this miRNA in GB models
resulted in elevated apoptosis and inhibition of tumor cell
growth. It was suggested that miR-137 may act by decreasing
translation of EGFR protein, hence decreasing proproli-
ferative activity of this receptor in tumor cells [224]. Sim-
ilarly, miR-615, miR-1231, or miR-133, also downregulated
in glioblastoma, were found to inhibit EGFR levels [225–
227]. On the other hand, upregulation of miR-21, often
found in glioblastoma patients, promotes EGFR activity and
supports tumor growth [228]. Yin et al. showed that miR-
34a was often deleted in glioblastoma showing EGFR am-
plification; however, they did not evaluate the expression of
EGFRvIII within analyzed samples. Nevertheless, considering
the typical percentage of EGFRvIII-positive GB cases with
EGFR amplification, it is very likely that miR-34a deletion
coexists with EGFRvIII. Notably, Yin et al. indicated shorter
mean survival rate of patients diagnosed with GB with EGFR
amplification and miR-34a deletion compared to patients
with only one of these alterations [229]. Moreover, EGFRvIII-
mediated downstream signaling was found to be associated
with inhibition of miR-9 expression, further promoting
tumorigenicity in FOXP1-dependent manner [230]. In-
triguingly, lncRNA EGFR-AS1 was found to act via miR-
133b in regulation of glioblastoma cell migration, invasion,
and apoptosis and knockout of this noncoding RNA neg-
atively influenced tumor growth [231].

Besides protein-based therapeutic approaches, research
focuses on targeting EGFRvIII at the mRNA level. RNA
interference-based therapy relies on usage of ribozymes,
antisense oligonucleotides, or siRNA molecules comple-
mentary to regions that silencing is beneficial from a clinical
point of view [61]. Taking advantage of this technology
enables to inhibit activity of EGFR signaling pathways, with
relatively low toxicity and maintained high specificity

against EGFRvIII [63, 232, 233]. As promising results were
obtained in preclinical analyses with antisense oligonucle-
otides for the treatment of non-small-cell lung carcinoma
and prostate cancer [234, 235], possibility to silence EGFR
and EGFRvIII gained more attention. Sequence of mRNA
nucleotides in junction site between introns 1 and 7 in
EGFRvIII is highly specific and absent in any other human
genes. Nevertheless, the majority of current literature data
concerning siRNA is focused on EGFR in general, without
distinguishing normal receptor from mutated one. Con-
structs with proper antisense RNA sequence were demon-
strated to silence expression of mRNA encoding EGFRWT,
both in vitro on GB cells with EGFRWT expression and in
vivo on rat GB model. In the former model, significant
decrease in level of EGFR mRNA and protein, decrease in
proliferation rate, and induction of apoptosis were observed
in cells with the expression of introduced construct, while in
the latter model all rats with introduced antisense RNA were
characterized with prolonged survival rate, when compared
to animals with empty construct [236]. Comparison of the
construct with antisense RNA complementary to 3′ end and
to the whole EGFRWTmRNA encoding region demonstrated
that inhibition is more effective in the first case, possibly as
delivery of shorter construct may be much easier and effi-
cient [236, 237]. First reports indicate that siRNA com-
plementary to exon 1 and 8 junction site is able to inhibit
EGFRvIII expression in human glioma cells, leading to de-
crease in AKTphosphorylation and inhibition of cell cycle in
G2/M [238].

Gene therapy using ribozymes is based on the ability of
antisense RNA to catalytically digest mRNA substrate within
the specific nucleotide sequence [239]. Low-molecular
hairpin-type ribozymes were able to specifically inhibit
EGFR expression, as well as proliferation and clonogenicity
of GB cells in vitro [60, 239]. In terms of gene-editing ap-
proaches, it is worth to mention that CRISPR-based tech-
nologies have only little chance of being successfully applied
in case of EGFRvIII, as deletions within EGFR leading to the
formation of this oncogenic variant are quite extensive and
tend to differ between patients [240]. It is worth to mention
that RNA interference can be achieved by miRNA upre-
gulation. Moreover, one of the miRNAs, miRNA-34a, was
demonstrated to enhance the antiproliferative effect of
erlotinib [241].

9. In Vitro Models for EGFRvIII Analyses

One of the additional and still unresolved problems re-
garding development of an effective anti-EGFRvIII therapy is
lack of the appropriate ex vivo/in vitro models reflecting
heterogeneity of GB cell genotype and phenotype. Results
obtained under in vitro conditions often tend to differ
significantly from those obtained in clinical trials, as ex-
emplified by results presented above. In primary GB cul-
tures, EGFRvIII expression is quite stable in neurospheres,
while in adherent cultures it tends to be lost as soon as after
several passages. Analyses of SOX2 expression (marker of
neural stem cells and factor crucial to maintain proliferation
of GB cells) indicate that neurospheres and adherent cells
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differ in the state of differentiation—adherent cells gradually
lose SOX2, while in spheroids expression of this marker
remains at relatively constant level [242]. It is worth to
emphasise that themajority of GB cells are SOX2-positive, as
it is in contrary to the assumptions that cancer stem cells
constitute only so-called side population or, it is possible that
SOX2 is a marker not characteristic solely for stem cells
[243, 244]. Apart from SOX2, glioblastoma cells also express
GFAP, which can be considered quite surprising as GFAP
for many years has been considered a marker of mature
astrocytes. Nevertheless, GFAP-positive neural stem cells
have been described in the literature [245] and these, similar
to GB cells, were demonstrated to coexpress many other
markers [163, 245].

Despite the fact that spheroid cultures maintain original
phenotype of GB cells for a longer period (there is no stable
GFAP+/SOX2+ adherent cell line), this approach is associ-
ated with various methodological difficulties. First of all,
certain assays on 3D structure may be difficult to be per-
formed. Moreover, cells maintained in medium containing
serum are more resistant to the exposure to cytotoxic
molecules than neurospheres cultures in serum-free media.
Finally, not all primary GB cells are able to form spheroid
structures [246]. Basically, in vitro culturing should promote
survival and proliferation of cancer cells; however, it may
lead to spontaneous senescence, mitotic catastrophe, or
apoptosis. ,e occurrence of in vitro senescence described
to play both pro- and antineoplastic role in vivo in primary
GB cultures can be plausibly associated with failure in their
stabilization [247]. Stable glioblastoma line may not only
fail to reflect the heterogeneous nature of tumor cells
observed in vivo, but also lack extrachromosomal
amplicons encoding EGFRvIII [21, 150, 167]. However, the
limited amount of tumor material derived from patients
and its low stability force scientists to conduct research on
commercially available stable cell lines with exogenously
introduced EGFRvIII-encoding gene [153, 248]. Analyses
on such models may be unreliable, as introduction of
EGFRvIII cDNA via cell engineering methods may give
biased results regarding such aspects as clonality (different
results obtained depending on the analyzed clone) or

neglect the dynamic regulation of amplicons released from
EVs. Additionally, exogenously introduced EGFRvIII may
not have an impact on the biology of already fully defined
cancer cells, such as U87-MG cell line [147]. ,erefore,
biological differences observed between U87-MG clones
may be easily confused and taken as the effect of EGFRvIII

action. Hence, there is an ongoing search for the most
appropriate model, reflecting nature of GB cells as pre-
cisely as possible.

10. Summary

Table 2 presents most important issues addressed in the
article (except therapies in Table 1). EGFRvIII protein may be
considered a suitable target in 28–30% of GB cases, as it is
selectively expressed on cancer cells and structurally differs
from wild-type receptor. Nevertheless, opinions on the role
of EGFRvIII in GB biology are contradictory. ,is mutated
receptor seems to play a key role in tumor cells, enhancing
their proliferation, inhibiting apoptosis, or being considered
a marker of CSCs. On the other hand, it is suggested that
EGFRvIII is unnecessary for GB cells, especially at advanced
stages of tumorigenesis, that may be considered a drawback
in terms of therapeutic approaches directed against this
mutated receptor. Despite many years of extensive research,
EGFRvIII-specific inhibitors have not been developed yet.
,ere are also many controversies regarding antibodies
designed to specifically detect this oncogenic variant, which
in turn may be negatively correlated with the efficacy of
CAR-T and other immunotherapy-based approaches. Many
factors hinder glioblastoma treatment, including heteroge-
neity of EGFRWT/EGFRvIII expression, the impact of re-
ceptor signaling on various cellular processes, mechanisms
of cells resistance to treatment, or the presence of cancer
stem cell populations. Undoubtedly, anti-EGFRvIII therapies
constitute the important area of research, but the structure,
mechanism of action, and the biological role of EGFRvIII

need to be determined for their proper development. In
particular, it is crucial to resolve whether EGFRvIII-negative
glioblastoma cells are dependent on EGFRvIII-positive
population or not.

Table 2: Issues addressed in the article (except therapies in Table 1).

EGFRvIII issue/process Mechanism/way to address Selected references

EGFRvIII presence in tumors/cancers GB in about 40%, rarely in HNCSCC, lung prostate,
colorectal cancer, breast cancer [27, 33–41, 43]

EGFRvIII mechanism of mutation Deletion of EGFR exons 2–7 [26–29, 43]

EGFRvIII mechanism of action

Several models:
(1) Heterodimerization with EGFRWT

(2) Homodimerization
(3) EGFRvIII and MET cooperation, FAK involved

(4) OSMR mechanism
Resistant to degradation important for all models

[16, 17, 121–126, 142, 143]

EGFRvIII biological role

Extreme opinions: from lack of important role at
advanced cancer (tumor) stages, to role in self-

renewal, survival, and proliferation of cancer stem
cells

[33, 147, 150, 152–158, 164, 165]

EGFRvIII cell culture models 3D primary cell cancer cell models, DK-MG model,
genetically modified cancer cell lines [21, 150, 153, 167, 242–244, 246–248]
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